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Vibrational dynamics of cluster-cluster aggregations
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~Received 28 July 1997; revised 29 December 1997!

The vibrational dynamics of diffusion-limited cluster-cluster aggregations~DLCA! and reaction-limited
cluster-cluster aggregations~RLCA! are numerically studied. The dependence on particle concentration of the
density-density correlation functiong(r ) and the density of states~DOS! D~v! are investigated. It is shown
that the frequency dependence of the DOS depends on a sticking probability of clusters when an aggregate is
formed. The spectral dimensiond̃ on a three-dimensional system is obtained asd̃51.1760.04 for DLCA, and
d̃51.2860.03 for RLCA. In addition, the scaling properties for the dynamical structure factorS(q,v) taking
into account the fractality of the DLCA are argued.@S1063-651X~98!06604-5#

PACS number~s!: 61.43.Hv, 63.50.1x, 05.90.1m
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I. INTRODUCTION

The aggregation process of small particles has attract
great deal of interest in the past decade, due to their w
range of practical applications or their own scientific impo
tance@1,2#. There are two types of aggregation. One is
particle-cluster aggregation~DLA ! proposed by Witten and
Sander@3#. A lot of numerical simulations for the DLA
model have revealed complex random-dendritic structu
with remarkable scaling and universal properties. The fra
dimensionD f of the DLA is distinctly smaller than the Eu
clidean dimensiond. This is a basic model for a variety o
aggregations and other growth processes, in which only
particle is allowed in the vicinity of the growing cluster an
all growth originates from a collision between single partic
and a cluster. However, these features are unrealistic
many actual colloidal systems. The other is the clus
cluster aggregation model developed by Meakin@4# and
Kolb et al. @5#. The cluster-cluster aggregation models d
scribe the sol-gel transition due to a nonequilibrium proce
whose underlying mechanism leading to the formation of
networks had been far from complete. Several models h
been proposed to elucidate the formation of the gel netw
namely, the kinetic equation approach, the bond-percola
model, and the kinetic aggregation model@6#. Among them,
the cluster-cluster aggregation model is the most succes
one for understanding the gel formation. If the particle co
centrationc is larger than a characteristic gel concentrat
cg , an aggregate spans a box from edge to edge in t
directions. At the gelling threshold (c'cg), where an aggre-
gate with the fractal dimensionD f reaches the sizeL of
cubic box, one should have

cg;
LD f

Ld
;L2~d2D f !. ~1!

As found by Kolb and Herrmann@7#, the gel concentration
cg tends to zero in theL→` limit in this model. Numerical
simulations indicate that the fractal dimensions of diffusio
limited cluster-cluster aggregation take values ofD f51.44
60.03 for d52 andD f51.7860.06 for d53, respectively
@1#.
571063-651X/98/57~4!/4426~5!/$15.00
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Many of investigations on the vibrational dynamics f
self-similar systems, e.g., for percolating networks, have
ceived much attention in this decade@8,9#. Low-frequency
modes for these systems are called fractons, which
strongly localized modes@10,11#. Meanwhile, a lot of experi-
ments have been carried out for silica aerogels to clarify
nature of fracton excitations@12–14#. The dynamical scaling
arguments have been applied to discuss the universal p
erties of these systems@10#. In self-similar systems, the den
sity of statesD~v! behaves as

D~v!;v d̃21, ~2!

whered̃ is the spectral dimension. For percolating networ
the value ofd̃ is approximately equal tod̃54/3 in the case of
a scalar model, independent of the Euclidean dimensiond.
However, there is no theoretical prediction on the value
the spectral dimensiond̃ for cluster-cluster aggregations be
cause of its complex structure. In general, excitations in s
similar systems are strongly localized, and should obey
single-length scaling postulate~SLSP!. It means that all the
physically relevant length scales, such as wavelengthl~v!,
scattering lengthl s(v), or localization lengthl c(v), scale
such as@15,16#

L~v!;v2 d̃ /D f . ~3!

Based on the SLSP, the dynamical structure factorS(q,v)
should take the following scaling form with the characteris
lengthL~v!:

S~q,v!5qyF@qL~v!#, ~q[uqu!, ~4!

whereF(x) andy are a scaling function and a scaling exp
nent, respectively.

In this paper, the vibrational dynamics of cluster-clus
aggregations is numerically studied. We have computed
density-density correlation functiong(r ) and the density of
states~DOS! on cluster-cluster aggregations. From these c
culations, the relationship between the structure of
cluster-cluster aggregation and its vibrational dynamics
clarified. We have found that the frequency dependence
the DOS depends on a sticking probability of clusters wh
4426 © 1998 The American Physical Society
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an aggregate is formed. At higher concentrations, the cr
over from extended phonons to strongly localized excitati
~fractons! is clearly realized in the calculated DOS’s. W
argue also the scaling properties of the dynamical struc
factor S(q,v) on d53.

II. MODELS

At first, we describe the formation rules of the cluste
cluster aggregation@4,5,17,18#. There are two different mod
els such as diffusion-limited cluster-cluster aggregat
~DLCA! and reaction-limited cluster-cluster aggregati
~RLCA!, which correspond to fast and slow aggregation p
cesses, respectively. We take the unita51 for a lattice con-
stant. In this model,N particles are randomly disposed in
cubic box of the sizeL, where the particle concentratio
becomesc[N/L3. The i th particle~or cluster! is chosen at
random according to the probabilityP(ni ,a) defined by

P~ni ,a![
ni

a

(
j

ni
a

, ~5!

whereni is the number of particles in thei th cluster, anda is
a numerical parameter. Thei th cluster is moved by one ste
along a randomly chosen direction among six directio
~61,0,0!, ~0,61,0!, ~0,0,61! in a cubic box. If the cluster
does not collide with another one, the displacement is p
formed and the algorithm goes on by choosing again ano
cluster. If a collision occurs between two clusters, they st
together forming a new large cluster with a sticking probab
ity p, and another cluster is chosen again at random. A st
ing probability p is chosen asp51 for the DLCA model
@17# and p!1 for the RLCA model@18,19#. We neglect
rotational diffusions, deformations, as well as all kinds
restructuring effects in this process. This is repeated un
single aggregate is formed~see Fig. 1!.

Let us consider the equation of motion for these aggre
tions, consisting ofN particles. The equations of motion a
given by

müi~ t !5(
j

f i j uj~ t !, ~6!

whereui(t) and f i j are the displacement of the particle
the i th site and the force constant between the particlesi and
j , respectively. In Eq.~6!, the force constantf i j is taken to
be

f i j 5H zi , i 5 j

21 nearest neighbor

0 otherwise ,

~7!

wherezi is the coordination number at the sitei .

III. NUMERICAL RESULTS

We have formed large-scale cluster-cluster aggregat
by means of computer simulations. Periodic boundary c
ditions are employed in all spatial directions. Figure 2 is
typical example of ad53 DLCA formed on a simple-cubic
lattice. The system size of thed53 cluster shown in Fig. 2 is
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L540 with the particle concentrationc50.05. One can re-
alize that highly ramified structure is formed in a box. T
density-density correlation functiong(r ) is computed to
clarify the structure of the DLCA described above. T
density-density correlation functiong(r ) is defined so that
g(r )dr is proportional to a probability of finding a particle i
a volumedr at a distancer from a given particle. Conse
quently, for an isotropic material, the number of particle ce
ters (dn) located betweenr andr 1dr from a given particle
is proportional tog(r )4pr 2dr in d53. Figure 3~a! shows
profiles of g(r ) on d53 DLCA for various concentrations
The system size of the DLCA in Fig. 3~a! is taken to beL
5120. Solid circles, solid triangles, open circles, and op
triangles in Fig. 3~a! display the results forc50.025, 0.05,
0.10, and 0.20, respectively. It is shown that the correlat
functionsg(r ) obey the power-law decay for smallr . The
characteristic lengthj of aggregates is defined as the min
mum ofg(r ) @17#. @See arrows in Fig. 3~a!.# For length scale

FIG. 1. The formation of the cluster-cluster aggregation.
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L,j, the system is self-similar~fractal!, and for L.j the
system becomes homogeneous. The dependence ofj on the
concentrationc for d53 is shown in the log-log plot in Fig
3~b!. Provided that clusters are fractal with a fractal dime
sion D f , one should obtain

j;c21/~d2D f ! ~8!

FIG. 2. Three-dimensional (d53) DLCA formed on a simple-
cubic lattice. The system size is taken asL540. The particle con-
centration isc50.05.

FIG. 3. ~a! The density-density correlation functiong(r ) of d
53 DLCA model. The system size is taken asL5120. The particle
concentration is chosen asc50.025, 0.05, 0.10, and 0.20.~b! The
dependence ofj on the concentrationc for d53 DLCA.
-

from Eq. ~1!. A straight-line fitted in Fig. 3~b! gives a slope
of 20.8160.06, leading toD f'1.77, in agreement with re
ported values ofd53 DLCA @17#.

Vibrational densities of statesD~v! of DLCA are calcu-
lated using the forced-oscillator method@20,21#. Figure 4
shows vibrational densities of statesD~v! of d52 DLCA
with different concentrationsc under the periodic boundar
condition. The system size is taken to beL5300, and par-
ticle concentrations are given byc50.05, 0.10, 0.15, and
0.20, respectively. The exponenta in Eq. ~5! is taken to be
a50. The density of statesD~v! shows the power-law be
havior such asD(v)}v0.1460.03. This power-law behavior
reflects the fractal structure of aggregates. We also calcu
the DOS fora521/D f , which does not make a differenc
on the frequency dependence of the DOS@22#. From these
results, it is shown that the spectral dimensiond̃ does not
depend on the choice of the exponenta.

Figure 5~a! shows the frequency dependence of the vib
tional density of statesD~v! of d53 DLCA with different
concentrationsc. The system size is taken to beL5160,
which is much larger than that of Ref.@23#. The numbers of
particles in DLCA clusters are 102 400, 204 800, 409 6
and 819 200 with the concentrationc50.025, 0.05, 0.10, and
0.20, respectively. The ensemble average is taken ove
samples. At lower concentrations (c<0.10), we find that the
frequency dependence of the density of states obeys
power-law behaviorD(v)}0.1760.04. At the higher concen-
tration (c50.20), there is a crossover from the Debye ph

non regime (}v2) to the power-law regime (}v d̃21) at the
frequencyvc'0.02, whered̃ is the spectral dimension@10#.
Our result indicates that the spectral dimensiond̃ takes the
values d̃51.1460.03 for d52 DLCA and d̃51.1760.04
for d53 DLCA, which are distinctly smaller than those fo
percolating networks (d̃'4/3). It is remarkable that the
spectral dimensionsd̃ of the DLCA do not depend on the
Euclidean dimensionsd, as in the case of percolating ne
works@8#. In Fig. 3~a!, the correlation lengthj is a few times
larger than a lattice constanta at c50.10. It implies that the
length scale showing the self-similarity is very small at th
concentration. It is surprising that, in spite of the correlati
length j being very small, the frequency regime where t
DOS obeys the power law is quite large atc50.10. We also
calculate the DOS of thed53 RLCA model formed on a
simple cubic lattice. Figure 5~b! shows the frequency depen

FIG. 4. The vibrational density of statesD~v! of d52 DLCA
model. The system size is taken asL5300. The particle concentra
tion is chosen asc50.05, 0.10, 0.15, and 0.20.
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dence of DOS for four different concentrations,c50.05,
0.10, 0.15, and 0.20. The system size is taken to beL580,
and the sticking probabilityp is chosen to bep50.02 in
these calculations. Figure 5~b! indicates that the value o
spectral dimensiond̃ is equal to d̃51.2860.03, which is
apparently different from that of the DLCA model. It show
that the properties of vibrational dynamics depend on
sticking probability of cluster aggregations on these syste
To our knowledge, this is the first observation of the fr
quency dependence of DOS on the RLCA model.

Figures 6~a! and 6~b! show the dynamical structure facto
S(q,v) for d53 DLCA. We have computed the dynamic
structure factorS(q,v) of d53 DLCA for four different
wave vectorsq along the@100# direction. The system size i
taken to beL5120. A broad peak with a long tail extende
to higher frequencies is observed, which qualitatively agr
with the Brillouin spectra of base-catalyzed silica aerog
@24#. Figure 6~a! shows the rescaled plot of the dynamic
structure factorS(q,v) of d53 DLCA at c50.025. The
wave numberq[uqu is taken to beq50.26, 0.52, 0.79, and
1.57. It is shown that the frequency dependence ofS(q,v)
takes a peak value atv5vmax, andS(q,v) can be scaled by
the frequencyv5vmax. The universal curve in Fig. 6~a!
exhibits that vibrational excitations on the DLCA satisfy t
single-length scaling postulate@15#. The dispersion relation
relating the wave numberq and the peak positionvmax

should obeyq}vmax
d̃/Df . The dispersion relation obtained from

FIG. 5. ~a! The vibrational density of statesD~v! of d53
DLCA. The system size is taken asL5160. The particle concen
tration is chosen asc50.025, 0.05, 0.10, and 0.20.~b! The vibra-
tional density of statesD~v! of d53 RLCA. The system size is
taken asL580. The particle concentration is chosen asc50.05,
0.10, 0.15, and 0.20.
e
s.
-

s
s
l

S(q,v) becomesq}vmax
0.6460.05, which is consistent with the

value obtained fromd̃ andD f in Figs. 3~b! and 5~a!. Figure
6~b! shows the rescaled plot ofS(q,v) of d53 DLCA at
c50.20. In contrast to Fig. 6~a!, plotted data in Fig. 6~b! are
not fitted onto a single universal curve. The difference b
tween Figs. 6~a! and 6~b! originates from whether the system
shows a self-similarity or not. Our calculated results sho
in Fig. 6~a! are in agreement with above theoretical pred
tions.

IV. CONCLUSIONS

In this paper we have performed large-scale simulati
on cluster-cluster aggregations, which is known to be a s
cessful model for the gel formation. The aggregates
formed on a square lattice and a simple cubic lattice w
different particle concentrations. We have studied
density-density correlation functiong(r ) for d53 DLCA.
At the lower concentration, self-similarities have been sur
demonstrated from the calculated density-density correla
function g(r ). The fractal dimensionD f of the DLCA is
numerically obtained, from the concentration dependence
the correlation lengthj, asD f'1.77 in d53, in agreement
with previous studies. Vibrational densities of statesD~v!
are calculated for DLCA and RLCA models and their co
centration dependence is clarified. From these calculati
the relationship between the structure of the cluster-clu

FIG. 6. ~a! The rescaled plot of the dynamical structure fac
S(q,v) of d53 DLCA. The system size is taken asL5120. The
particle concentration is given byc50.025.~b! The rescaled plot of
the dynamical structure factorS(q,v) of d53 DLCA. The system
size is taken asL5120. The particle concentration is given byc
50.20.
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4430 57TERAO, YAMAYA, AND NAKAYAMA
aggregations and its vibrational dynamics has become c
We have found that the frequency dependence of the D

shows a power-law behavior such asD(v)}v d̃21. The
spectral dimensionsd̃ on d53 take the valuesd̃51.17
60.04 for DLCA and d̃51.2860.03 for RLCA, respec-
tively. These results show that DLCA and RLCA have d
ferent power-law dependences of the DOS. At higher part
concentrationsc, the crossover from extended phonons
strongly localized excitations is clearly observed. Atc
50.10, though the correlation length of the DLCA with
which the fractality of the aggregate becomes relevan
short, the frequency regime where the DOS follows
power-law is quite large. This point remains to be clarifi
for future investigations. We have also investigated the
quency dependence of the dynamical structure factorS(q,v)
and its scaling properties ford53 DLCA. For lower concen-
trationsc, calculated results are fitted onto a single univer
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e
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curve as shown in Fig. 6~a!, revealing that the single-lengt
scaling postulate is satisfied forS(q,v). On the contrary,
S(q,v) is not rescaled with a single characteristic leng
scale for the system with higher concentrationsc. This indi-
cates that the self-similarity is an important factor for o
results. We have demonstrated that computer simulat
provide comprehensive results for the investigation of
dynamical properties of systems described by cluster-clu
aggregations@17#.
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