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Vibrational dynamics of cluster-cluster aggregations
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The vibrational dynamics of diffusion-limited cluster-cluster aggregati@isCA) and reaction-limited
cluster-cluster aggregatiofiRLCA) are numerically studied. The dependence on particle concentration of the
density-density correlation functiog(r) and the density of statd®0S) D(w) are investigated. It is shown
that the frequency dependence of the DOS depends on a sticking probability of clusters when an aggregate is
formed. The spectral dimensiahon a three-dimensional system is obtainediasl.17+0.04 for DLCA, and
d=1.28+0.03 for RLCA. In addition, the scaling properties for the dynamical structure f&tpiw) taking
into account the fractality of the DLCA are argu¢81063-651X%98)06604-5

PACS numbdss): 61.43.Hv, 63.50t+x, 05.90+m

[. INTRODUCTION Many of investigations on the vibrational dynamics for
self-similar systems, e.g., for percolating networks, have re-
The aggregation process of small particles has attracted@ived much attention in this decaf®9]. Low-frequency
great deal of interest in the past decade, due to their widenodes for these systems are called fractons, which are
range of practical applications or their own scientific impor-strongly localized moddd 0,11]. Meanwhile, a lot of experi-
tance[1,2]. There are two types of aggregation. One is thements have been carried out for silica aerogels to clarify the
particle-cluster aggregatiofDLA) proposed by Witten and nature of fracton excitatiorfd2—14. The dynamical scaling
Sander[3]. A lot of numerical simulations for the DLA arguments have been applied to discuss the universal prop-
model have revealed complex random-dendritic structuresrties of these systen$0]. In self-similar systems, the den-
with remarkable scaling and universal properties. The fractasity of statesD(w) behaves as
dimensionD; of the DLA is distinctly smaller than the Eu- ~
clidean dimensiord. This is a basic model for a variety of D(w)~w??, 2
aggregations and other growth processes, in which only one .
particle is allowed in the vicinity of the growing cluster and whered is the spectral dimension. For percolating networks,
all growth originates from a collision between single particlethe value ofd is approximately equal td=4/3 in the case of
and a cluster. However, these features are unrealistic faf scalar model, independent of the Euclidean dimensions
many actual colloidal systems. The other is the clusterHowever, there is no_theoretical prediction on the value of
cluster aggregation model developed by Meak#j and  the spectral dimensiod for cluster-cluster aggregations be-
Kolb et al. [S]. The cluster-cluster aggregation models de-cayse of its complex structure. In general, excitations in self-
scribe the sol-gel transition due to a nonequilibrium processsimilar systems are strongly localized, and should obey the
whose underlying mechanism leading to the formation of gebingle-length scaling postulatSLSP. It means that all the
networks had been far from complete. Several models havgnysically relevant length scales, such as waveleng),

been proposed to elucidate the formation of the gel ”etWO”‘scattering lengt (), or localization length .(w), scale
namely, the kinetic equation approach, the bond-percolatiog,ch aq15,16

model, and the kinetic aggregation mo{i&). Among them,
the cluster-cluster aggregation model is the most successful A(w)wwf&/of 3)
one for understanding the gel formation. If the particle con- '

centrationc is larger than a characteristic gel concentrationgased on the SLSP, the dynamical structure fas(@y, )

Cg, an aggregate spans a box from edge to edge in threghould take the following scaling form with the characteristic
directions. At the gelling threshola{=cg), where an aggre-  |ength A (w):

gate with the fractal dimensio®; reaches the sizé of

cubic box, one should have S(9,0)=0’F[aA(w)], (q=]al), 4
L O whereF(x) andy are a scaling function and a scaling expo-
Cy~ _dNL—<d—Df>_ (1) nent, respectively.
L

In this paper, the vibrational dynamics of cluster-cluster
aggregations is numerically studied. We have computed the
As found by Kolb and Herrmanfi7], the gel concentration density-density correlation functiog(r) and the density of
Cq4 tends to zero in thé —co limit in this model. Numerical — statesDOS) on cluster-cluster aggregations. From these cal-
simulations indicate that the fractal dimensions of diffusion-culations, the relationship between the structure of the
limited cluster-cluster aggregation take valuesnf=1.44  cluster-cluster aggregation and its vibrational dynamics is
+0.03 ford=2 andD;=1.78+0.06 ford=3, respectively clarified. We have found that the frequency dependence of
[1]. the DOS depends on a sticking probability of clusters when
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an aggregate is formed. At higher concentrations, the cross-
over from extended phonons to strongly localized excitations
(fractong is clearly realized in the calculated DOS’s. We
argue also the scaling properties of the dynamical structure
factor S(q,w) ond=3.

Il. MODELS

At first, we describe the formation rules of the cluster-
cluster aggregatiof¥,5,17,18. There are two different mod-
els such as diffusion-limited cluster-cluster aggregation
(DLCA) and reaction-limited cluster-cluster aggregation
(RLCA), which correspond to fast and slow aggregation pro-
cesses, respectively. We take the wnit1 for a lattice con-
stant. In this modelN particles are randomly disposed in a
cubic box of the sizd_, where the particle concentration
becomes=N/L3. Theith particle(or clustej is chosen at
random according to the probabili®(n;,«) defined by

n;

P(nj,a)= : ©)

> nf
]

wheren; is the number of particles in théh cluster, andv is

a numerical parameter. Thth cluster is moved by one step
along a randomly chosen direction among six directions
(*+1,0,0, (0,+1,0, (0,0,£1) in a cubic box. If the cluster
does not collide with another one, the displacement is per-
formed and the algorithm goes on by choosing again another
cluster. If a collision occurs between two clusters, they stick
together forming a new large cluster with a sticking probabil-
ity p, and another cluster is chosen again at random. A stick-
ing probability p is chosen ap=1 for the DLCA model
[17] and p<1 for the RLCA model[18,19. We neglect
rotational diffusions, deformations, as well as all kinds of
restructuring effects in this process. This is repeated until a
single aggregate is formddee Fig. L

Let us consider the equation of motion for these aggrega-

tions, consisting ofN particles. The equations of motion are
given by

m'ui<t)=§ ¢ijuj(b), (6)

whereu;(t) and ¢;; are the displacement of the particle at
theith site and the force constant between the partickasd

j, respectively. In Eq(6), the force constang;; is taken to
be

Zi y | :J

-1
0 otherwise ,

nearest neighbor (7)

</>ij:

wherez; is the coordination number at the site

IIl. NUMERICAL RESULTS

4427

FIG. 1. The formation of the cluster-cluster aggregation.

L =40 with the particle concentration=0.05. One can re-
alize that highly ramified structure is formed in a box. The
density-density correlation functiog(r) is computed to
clarify the structure of the DLCA described above. The
density-density correlation functiog(r) is defined so that
g(r)dr is proportional to a probability of finding a particle in
a volumedr at a distancea from a given particle. Conse-
quently, for an isotropic material, the number of particle cen-
ters (dn) located between andr +dr from a given particle

is proportional tog(r)4=r2dr in d=3. Figure 3a) shows
profiles ofg(r) on d=3 DLCA for various concentrations.
The system size of the DLCA in Fig.& is taken to beL
=120. Solid circles, solid triangles, open circles, and open

We have formed large-scale cluster-cluster aggregationiangles in Fig. 83 display the results foc=0.025, 0.05,
by means of computer simulations. Periodic boundary con0.10, and 0.20, respectively. It is shown that the correlation
ditions are employed in all spatial directions. Figure 2 is afunctionsg(r) obey the power-law decay for small The

typical example of al=3 DLCA formed on a simple-cubic
lattice. The system size of tlie=3 cluster shown in Fig. 2 is

characteristic lengtly of aggregates is defined as the mini-
mum ofg(r) [17]. [See arrows in Fig.®).] For length scale
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FIG. 4. The vibrational density of statd¥w) of d=2 DLCA
model. The system size is takenlas 300. The particle concentra-
tion is chosen as=0.05, 0.10, 0.15, and 0.20.

from Eq. (1). A straight-line fitted in Fig. ) gives a slope
of —0.81+0.06, leading td{~1.77, in agreement with re-
ported values ofl=3 DLCA [17].
Vibrational densities of stateB(w) of DLCA are calcu-
FIG. 2. Three-dimensionald& 3) DLCA formed on a simple- |ated using the forced-oscillator meth¢d0,21. Figure 4
cubic lattice. The system size is takenlas 40. The particle con-  shows vibrational densities of stat&w) of d=2 DLCA
centration isc=0.05. with different concentrations under the periodic boundary
condition. The system size is taken to be- 300, and par-
ticle concentrations are given by=0.05, 0.10, 0.15, and
0.20, respectively. The exponeatin Eq. (5) is taken to be
a=0. The density of state®(w) shows the power-law be-
havior such asD(w)x w®*0%% This power-law behavior
reflects the fractal structure of aggregates. We also calculate
g~c~Md=Dr) (8)  the DOS fora=—1/D¢, which does not make a difference
on the frequency dependence of the D[23]. From these
results, it is shown that the spectral dimensibroes not
\A\ M (@) depend on the choice of the exponent
Figure 5a) shows the frequency dependence of the vibra-
oY 0 00000005000.000000000 tional density of state®(w) of d=3 DLCA with different
s concentrationss. The system size is taken to te= 160,
Nty ¥ SV which is much larger than that of R¢23]. The numbers of
—e— ¢=0.025 Adddadss I .
e =005 \\ particles in DLCA clusters are 102 400, 204 800, 409 600,
—o— ©=0.10 hA T, SUUUUUUI and 819 200 with the concentratios- 0.025, 0.05, 0.10, and
T c=0.20 0.20, respectively. The ensemble average is taken over 10
samples. At lower concentrations<£0.10), we find that the
102 - . - frequency dependence of the density of states obeys the
100 (10" 102 power-law behavioD(w)=<%170% At the higher concen-
tration (c=0.20), there is a crossover from the Debye pho-
non regime ¢ w?) to the power-law regimex{w® ') at the
(b) frequencyw~0.02, whered is the spectral dimensidri0].
Our result indicates that the spectral dimensibrakes the
valuesd=1.14+0.03 ford=2 DLCA andd=1.17+0.04
101 F i for d=3 DLCA, which are distinctly smaller than those for
percolating networks d~4/3). It is remarkable that the
spectral dimensiond of the DLCA do not depend on the
Euclidean dimensiond, as in the case of percolating net-
works[8]. In Fig. 3a), the correlation lengtl is a few times
100 . . : larger than a lattice constaatat c=0.10. It implies that the
102 101 length scale showing the self-similarity is very small at this
c concentration. It is surprising that, in spite of the correlation
FIG. 3. (8 The density-density correlation functigg(r) of d  length & being very small, the frequency regime where the
=3 DLCA model. The system size is takenlas 120. The particle =~ DOS obeys the power law is quite largecat 0.10. We also
concentration is chosen as=0.025, 0.05, 0.10, and 0.2(b) The  calculate the DOS of thd=3 RLCA model formed on a
dependence of on the concentration for d=3 DLCA. simple cubic lattice. Figure(b) shows the frequency depen-

L<¢, the system is self-similaffractal), and forL> ¢ the
system becomes homogeneous. The dependené@mthe
concentratiorc for d=3 is shown in the log-log plot in Fig.
3(b). Provided that clusters are fractal with a fractal dimen-
sion D¢, one should obtain

10F

a(n

102 — ;
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FIG. 5. (a) The vibrational density of state®(w) of d=3
DLCA. The system size is taken &s=160. The particle concen-
tration is chosen as=0.025, 0.05, 0.10, and 0.2(b) The vibra-
tional density of stateD(w) of d=3 RLCA. The system size is
taken asL=80. The particle concentration is chosencas0.05,
0.10, 0.15, and 0.20.

dence of DOS for four different concentrationss=0.05,
0.10, 0.15, and 0.20. The system size is taken td 560,
and the sticking probabilityp is chosen to bg=0.02 in
these calculations. Figure(l indicates that the value of
spectral dimensiord is equal tod=1.28+0.03, which is
apparently different from that of the DLCA model. It shows

that the properties of vibrational dynamics depend on th
sticking probability of cluster aggregations on these systems
To our knowledge, this is the first observation of the fre-

guency dependence of DOS on the RLCA model.

Figures §a) and &b) show the dynamical structure factor
S(g,w) for d=3 DLCA. We have computed the dynamical
structure factorS(q,w) of d=3 DLCA for four different
wave vectorsy along the[100] direction. The system size is
taken to beL =120. A broad peak with a long tail extended

to higher frequencies is observed, which qualitatively agree

with the Brillouin spectra of base-catalyzed silica aerogel

[24]. Figure &a) shows the rescaled plot of the dynamical

structure factorS(q,w) of d=3 DLCA at ¢c=0.025. The
wave numbeq=|q| is taken to beg=0.26, 0.52, 0.79, and
1.57. It is shown that the frequency dependenc&(af, w)
takes a peak value at= w4, andS(q, ) can be scaled by
the frequencyw= wna. The universal curve in Fig. (6)

exhibits that vibrational excitations on the DLCA satisfy the

single-length scaling postulafd5]. The dispersion relation
relating the wave numbeq and the peak positiono .y

should obeyge wﬁfxf . The dispersion relation obtained from
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FIG. 6. (a) The rescaled plot of the dynamical structure factor
S(q,w) of d=3 DLCA. The system size is taken &s=120. The
particle concentration is given lm/=0.025.(b) The rescaled plot of
the dynamical structure fact@(q,») of d=3 DLCA. The system
size is taken as =120. The particle concentration is given by
=0.20.

S(q,w) becomesy= w23 %%, which is consistent with the

value obtained fromd andD; in Figs. 3b) and 5a). Figure
6(b) shows the rescaled plot &(q,w) of d=3 DLCA at
¢=0.20. In contrast to Fig.(@), plotted data in Fig. ) are
not fitted onto a single universal curve. The difference be-
tween Figs. @) and @b) originates from whether the system
shows a self-similarity or not. Our calculated results shown
in Fig. 6(a) are in agreement with above theoretical predic-
tions.

IV. CONCLUSIONS

In this paper we have performed large-scale simulations
on cluster-cluster aggregations, which is known to be a suc-
cessful model for the gel formation. The aggregates are
formed on a square lattice and a simple cubic lattice with

ifferent particle concentrations. We have studied the

density-density correlation functiog(r) for d=3 DLCA.

At the lower concentration, self-similarities have been surely
demonstrated from the calculated density-density correlation
function g(r). The fractal dimensiorD; of the DLCA is
numerically obtained, from the concentration dependence of
the correlation lengtl, asDy~1.77 ind=3, in agreement
with previous studies. Vibrational densities of stafe@v)

are calculated for DLCA and RLCA models and their con-
centration dependence is clarified. From these calculations,
the relationship between the structure of the cluster-cluster
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aggregations and its vibrational dynamics has become cleaturve as shown in Fig.(6), revealing that the single-length
We have found that the frequency dependence of the DOScaling postulate is satisfied f@(q,w). On the contrary,

shows a power-law behavior such #w)xw? 1. The S(q,w) is not rescaled with a single characteristic length
spectral dimensionsl on d=3 take the valuesd=1.17 Scale for the system with higher concentratienhis indi-
£0.04 for DLCA andd=1.28+0.03 for RLCA respec- cates that the self-similarity is an important factor for our

tively. These results show that DLCA and RLCA have dif- resu!ts. We have de_monstrated that computer _5|mulat|ons
; . provide comprehensive results for the investigation of the

ferent power-law dependences of the DOS. At higher partlck,p : . i

. dynamical properties of systems described by cluster-cluster
concentrationg, the crossover from extended phonons toa regation§17]
strongly localized excitations is clearly observed. At goreg '
=0.10, though the correlation length of the DLCA within
which the fractality of the aggregate becomes relevant is
short, the frequency regime where the DOS follows the This work was supported in part by a Grant-in-Aid from
power-law is quite large. This point remains to be clarifiedthe Japan Ministry of Education, Science, and Culture for
for future investigations. We have also investigated the freScientific Research in Priority Areas, Cooperative Phenom-
guency dependence of the dynamical structure fefqrw) ena in Complex Liquid. The authors thank the Supercom-
and its scaling properties for=3 DLCA. For lower concen- puter Center, Institute of Solid State Physics, University of
trationsc, calculated results are fitted onto a single universalTokyo for the use of the facilities.
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